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Abstract

Motivated by applications in image processing, quality control, and econometrics we derive the exact
distribution function of the clipping median estimator which is designed to provide simultaneously robust
smooth and jump-preserving reconstructions. We allow for a mixture model which is of special interest for
applications in pixel-wise object detection. To construct statistical tests for pixel classification, we propose
to rely on estimated p-values. Simulations suggest that the resulting approximations are reliable.
r 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Suppose we are given n real-valued random variables (r.v.’s) Y 1; . . . ;Y n and aim at testing
whether mn ¼ EðY nÞ is affected by a level shift when compared to m1; . . . ;mn�1; where mi ¼

EðY iÞ; i ¼ 1; . . . ; n: This problem arises in various contexts, e.g., when a sequential monitoring
scheme for an economic time series or a series of quality measurements is established for the first
time and one wants to compare the current observation Y n with past data Y 1; . . . ;Y n�1 to detect a
level shift with no delay. Such a comparison can also be an useful additional tool for a fixed
see front matter r 2004 Elsevier B.V. All rights reserved.
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sample analysis, if the analysis is naively applied in a sequential way after getting the new
observation Y n; as it is often done in empirical econometric research. In image processing an
important task is to decide whether a pixel belongs to the background or to the foreground
(object). In this case we may define a local neighbourhood of h ¼ n � 1 neighbouring pixels,
denote their grey values by Y 1; . . . ;Y n�1; and add the grey value Y n of the current pixel to the
sample. In this article we focus on this image processing problem, last but not least because the
estimator has its origins in that field, but our results can be applied in various settings.
Quite often primary interest is in detecting level jumps. An estimator which is especially

designed to reproduce (grey level) jumps defining edges and contour lines of objects and their
location with high precision is the clipping median of mn defined as the empirical median of all Y i’s
with similar values as Y n: Here we consider a slightly more general version. Let kX0 be a
symmetric function R ! Rþ; usually but not necessarily unimodal and decreasing, and M40 a
parameter. Common choices for k are the uniform kernel or the Gaussian kernel. Define the
clipping median estimator bybmn ¼ ClipMedfkð½Y i � Y n	=MÞY ig;

where ClipMed is defined as

Medfkð½Y i � Y n	=MÞY i : 1pipn with jY i � Y njpMg: (1)

We use the common definition

Medfx1; . . . ; xng ¼

1
2
ðxðn=2þ1Þ þ xðn=2ÞÞ n even;

xð½nþ1	=2Þ n odd

(
of the empirical median of n r.v.’s x1; . . . ; xn; where xð1Þp � � �pxðnÞ denotes the corresponding
order statistic. Recall that the exact distribution for i.i.d. observations is related to the binomial
distribution due to the relationship

Medfx1; . . . ; xngpx3
Xn

i¼1

1ðxiXxÞpðn þ 1Þ=2;

which holds true for both even and odd n. For the clipping median the situation is more involved
and is the topic of this paper.
The particular version (1) has been studied in Pawlak et al. (2004), where sufficient conditions

were derived which ensure that the sequential stopping rule inffn 2 N : bmn4cg can detect jumps in
time series with no delay, if c is appropriately chosen. Note that bmn reduces to the empirical
median of all Y i such that jY i � Y njpM if k is the uniform kernel. However, the behaviour of bmn

for general k is as follows. Observations with jY i � Y nj4M; i.e., far away from the current
observation, are excluded from the calculation (clipping). The kernel k performs a shrinkage
operation, since observations Y i with large values of jY i � Y nj; which are not ignored by the
clipping mechanism, are shrunken towards 0. This means, the data transformation Y i 7!Zi ¼

kð½Y i � Y n	=MÞY i forms a cluster. The clipping mechanism ensures that the sample from which
the median is calculated shrinks substantially, if the current observation is different from the other
ones. This property ensures that sufficiently large level shifts can be reproduced more accurately
than with classic averaging procedures. If jY i � Y nj4M for all 1pion; the clipping median
interpolates, i.e., bmn ¼ Y n: Finally note that if the sample is homogenous (i.i.d.) with median 0, we
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have Medkð½Y i � Y n	=MÞY i ¼ 0; 1pipn: If there is a level shift, the Zi’s before the shift will be
shrunken to 0 if k is chosen appropriately, whereas the Zi’s after the shift are not shrunken.
The basic idea underlying the estimator bmn can be traced back to Lee (1983) who studied the

problem of edge-preserving estimators for image processing purposes. Lee’s estimator is
implemented in many image processing packages including Mathematica, see Wolfram Research
(2004). It has been studied in different contexts, e.g., to smooth magnetic resonance (MR) images.
That application has been studied by Godtliebsen (1991), Godtliebsen and Spjøtvoll (1991),
Chapter 4 of Budinger et al. (1996), and Chiu et al. (1998). The latter paper also discusses the
relationship to M estimation. For a discussion of an application of nonlinear Gaussian filters to
images we refer to Godtliebsen and Marron (1997). Further recent work can be found in Pawlak
and Rafaj"owicz (2001). The application of jump-preserving estimators for sequential monitoring
and related theoretical results can be found in Pawlak and Rafaj"owicz (2000), Steland (2002a),
Steland (2004a), and Pawlak et al. (2004). For related recent results on classic kernel estimators we
refer to Steland (2004b) and the references given there.
The contribution of this article is to provide a theoretical basis for deriving statistical test

procedures based on the clipping median. We consider two models. In Section 2 we study the d.f.
of bmn assuming that the neighbourhood Y 1; . . . ;Y n�1 forms a homogenous i.i.d. sample. Section 3
considers a more general mixture model. Finally, in Section 4 we study the a.s. convergence of the
proposed estimated p-values.
2. i.i.d. Neighbourhoods

Let us first study a setting which can be used to decide whether or not a single pixel belongs to a
homogeneous background. Assume Y 1; . . . ;Y n are independent such that Y 1; . . . ;Y n�1 are i.i.d.
with common d.f. F ðxÞ; and Y n � F ðx � DÞ for some shift D 2 R: We aim at testing H0 : D ¼ 0
versus H1 : Da0 based on the test statistic bmn: Let

Gnðx;DÞ ¼ PDðbmnpxÞ; x 2 R;

denote the d.f. of the clipping median estimator bmn:
Further, let p1; p2 2 ½0; 1	 be two probabilities and denote by

qðn; i; k; p1; p2Þ ¼
n!

i!k!ðn � i � kÞ!
pi
1p

k
2½1� p1 � p2	

n�i�k (2)

the trinomial probabilities, where n 2 N; i; kX0; and i þ kpn: We set qðn; i; kÞ ¼ 0 whenever the
constraints on the indices are not satisfied. For an event A (or logical expression) 1ðAÞ is 1 if A

occurs (is true), and equals 0 otherwise.

Theorem 1. Let Y 1; . . . ;Y n be independent random variables such that Y 1; . . . ;Y n�1 are i.i.d. with

c.d.f. F and Y n � F ðx � DÞ for some shift D 2 R: For all x 2 R we have

Gnðx;DÞ ¼
Z X

ðk;iÞ2Jðx;yÞ

qðn � 1; k; i; pþðx; yÞ; p�ðx; yÞÞdF ðy � DÞ;
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where J ¼ fðk; iÞ 2 f0; . . . ; n � 1g2 : k � ip21ðy4kð0Þ=MÞg and

pþðx; yÞ ¼ PðjY 1 � yjpM; kð½Y 1 � y	=MÞY 1XxÞ;

p�ðx; yÞ ¼ PðjY 1 � yjpM; kð½Y 1 � y	=MÞY 1oxÞ

for x; y 2 R:

Proof. We shall consider the case D ¼ 0; the general case D 2 R will be obvious. Hence, we have
for each x 2 R

Gnðx; 0Þ ¼

Z
P½Medfkð½Y i � y	=MÞY i : jY i � yjpMgpxjY n ¼ y	dF ðyÞ:

To calculate the integrand let

LðyÞ ¼ fi 2 f1; . . . ; ng : jY i � yjpMg

be the random set of all indices corresponding to the clipped observations and put LðyÞ ¼ jLðyÞj:
Note that n 2 LðyÞ: Recall that by definition of the clipping median,

ClipMedfZiðyÞgpx 3 SLðyÞðxÞp½LðyÞ þ 1	=2

for both LðyÞ odd and even, where

Sl ¼
Xl

i¼1

1ðZiðyÞXxÞ; l 2 N

with ZiðyÞ ¼ kð½Y i � y	=MÞY i; i ¼ 1; . . . ; n: Consequently,

Gnðx; 0Þ ¼

Z
P½SLðyÞðxÞ � ðLðyÞ þ 1Þ=2p0jY n ¼ y	dF ðyÞ:

We have

LðyÞ ¼
Xn�1

i¼1

1ðjY i � yjpMÞ þ 1;

SLðyÞðxÞ ¼
X

i2LðyÞ

1ðZiðyÞXxÞ

¼
Xn�1

i¼1

1ðjY i � yjpMÞ1ðZiðyÞXxÞ þ 1ðyXx=kð0ÞÞ:

Thus, SLðyÞðxÞ � LðyÞ=2p0 is equivalent toXn�1

i¼1

Ziðx; yÞp21ðy4kð0Þ=MÞ;

where

Ziðx; yÞ ¼ 21ðjY i � yjpMÞf1ðZiðyÞXxÞ � 1=2g i ¼ 1; . . . ; n � 1
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are i.i.d. f�1; 0;þ1g-valued r.v.’s with

PðZ1ðx; yÞ ¼ kjY n ¼ yÞ ¼ p�ðx; yÞ
1ðk¼�1Þpþðx; yÞ

1ðk¼1Þ
½1� pþðx; yÞ � p�ðx; yÞ	

1ðk¼0Þ:

By independence of Ziðx; yÞ; i ¼ 1; . . . ; n; the random vector ðNþðx; yÞ;N�ðx; yÞÞ; where

Nþðx; yÞ ¼
Xn�1

i¼1

1ðdiðx; yÞ ¼ þ1Þ;

N�ðx; yÞ ¼
Xn�1

i¼1

1ðdiðx; yÞ ¼ �1Þ

follows a trinomial distribution with parameters n � 1; pþðx; yÞ; and p�ðx; yÞ; Therefore, we obtain

P½SLðyÞ � ðLðyÞ þ 1Þ=2p0jY n ¼ y	

¼ P½Nþðx; yÞ � N�ðx; yÞp21ðy4kð0Þ=MÞjY n ¼ y	

¼
X

ðk;iÞ2Jðx;yÞ

qðn � 1; k; i; pþðx; yÞ; p�ðx; yÞÞ:

Obviously, the last expression is integrable w.r.t. dFðyÞ: Hence,

Gnðx;DÞ ¼
Z X

ðk;iÞ2Jðx;yÞ

qðn � 1; k; i; pþðx; yÞ; p�ðx; yÞÞdF ðyÞ:

If Y n � Fðx � DÞ; the measure dF ðyÞ is replaced by dF ðy � DÞ: &

This result suggests the following estimators for the d.f. of the clipping median under both the
null hypothesis and the alternative. For D ¼ 0 let

bGL1;L2;nðx; 0Þ ¼

Z X
ðk;iÞ2J�ðx;yÞ

qðn � 1; k; i; pþðx; yÞ; p�ðx; yÞdbFnðyÞ

¼
1

n � 1

X
ðk;iÞ2J�ðx;Y jÞ

qðn � 1; k; i; pþðx;Y jÞ; p�ðx;Y jÞ; ð3Þ

where

J�ðx; yÞ ¼ fðk; iÞ 2 f0; . . . ; n � 1g2 : jk � ðn � 1Þpþðx; yÞjpL1;

ji � ðn � 1Þp�ðx; yÞjpL2; jk � ijp21ðy4kð0Þ=MÞg:

L1;L2 are truncation constants selecting the central atoms around the means. bFn�1ðxÞ ¼

ðn � 1Þ�1Pn�1
j¼0 1ðY jpxÞ is the e.d.f. of Y 1; . . . ;Y n�1; and

bp1ðx; yÞ ¼ 1

n � 1

Xn�1

j¼1

1ðjY n�j � yjpM;Zn�jðyÞXxÞ; (4)

bp2ðx; yÞ ¼ 1

n � 1

Xn�1

j¼1

1ðjY n�j � yjpM;Zn�jðyÞoxÞ: (5)
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For Da0 the d.f. can be estimated by replacing dbFn�1ðyÞ in (3) by dbFn�1ðy � DÞ: Thus, definebGnðx;DÞ as

1

n � 1

X
ðk;iÞ2J�ðx;Y jþDÞ

qðn � 1; k; i; pþðx;Y j þ DÞ; p�ðx;Y j þ DÞÞ; (6)

where bpþðx; yÞ and bp�ðx; yÞ are defined as in (4) and (5), respectively.
We now propose to test H0 : D ¼ 0 against H1 : Da0 using the test f given by

f ¼ 1ðbpL1;L2;neða=2; 1� a=2ÞÞ; (7)

wherebpL1;L2;n ¼ bGL1;L2;nðbmn; 0Þ

is the estimated p-value. The a.s. convergence of the estimated p-value will be discussed in Section
4 using the more general framework of the next section.
3. Mixture model for neighbourhoods

We shall now generalize the results of the previous section to a mixture model for the
neighbourhood of the current observation Y n: So let Y 1; . . . ;Y n be independent r.v.’s. We assume
that k Y i’s are distributed according to FðxÞ (background), n � 1� k have distribution F ðx � DÞ
(object), and Y n � Fðx � D0Þ: This means, there exists a decomposition f1; . . . ; n � 1g ¼ I1 þI2

into disjoint nonempty sets I1 � f1; . . . ; n � 1g and I2 � f1; . . . ; n � 1g with jI1j ¼ k and jI2j ¼

n � 1� k; such that

Y i � F ðxÞ; i 2 I1; (8)

Y i � F ðx � DÞ; i 2 I2: (9)

Further, assume

Y n � F ðx � D0Þ: (10)

Here D;D0 2 R are level shifts. Provided D is known, the testing problem of interest is H0 : D0 ¼ D
versus H1 : D0 ¼ 0 to reveal that Y n is a background pixel, or H0 : D0 ¼ 0 versus H1 : D0 ¼ D to
reveal that Y n belongs to the object.
Put D ¼ ðD;D0Þ and let

Gnðx;DÞ ¼ PD½bmnpx	; x 2 R;

denote the d.f. of the clipping median, where PD indicates that the probability is calculated
assuming the mixture model given by (8)–(10) holds true.

Theorem 2. Let Y 1; . . . ;Y n be independent random variables such that (8)–(10) hold true. Let

I1 þI2 ¼ f1; . . . ; n � 1g be a disjoint decomposition in two non-empty sets. For all x 2 R we have

GðI1;I2Þ
n ðx;DÞ ¼

Z X
ðk;iÞ2Jðx;yÞ

P1;jI1jðx; y; kÞP2D;jI2jðx; y; iÞdFðy � D0Þ;
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where Jðx; yÞ ¼ fðk; iÞ 2 N2 : jkjpjI1j; jijpjI2j; k þ ip21ðy4kð0Þ=MÞg; and

P1;lðx; y; rÞ ¼
Xl�r

i¼�r

qðjI1j; i; r þ i; pþðx; y; 0Þ; p�ðx; y; 0ÞÞ; jrjpjI1j; (11)

P2D;lðx; y; rÞ ¼
Xl�r

i¼�r

qðjI2j; i; r þ i; pþðx; y;DÞ; p�ðx; y;DÞÞ; jrjpjI2j (12)

with

pþðx; y; dÞ ¼ PðjY þ d� yjpM; kð½Y þ d� y	=MÞYXxÞ; (13)

p�ðx; y; dÞ ¼ PðjY þ d� yjpM; kð½Y þ d� y	=MÞYoxÞ (14)

for d 2 R:

Proof. The proof is similar as the proof of Theorem 1. Let eY 1; . . . ; eY n �
i:i:d:

F ðxÞ: Then we may
assume Y i ¼ eY i if i 2 I1; Y i ¼ eY i þ D if i 2 I2; and Y n ¼ eY n þ D0:Using the same notation as in
the proof of Theorem 1, we have given Y n ¼ y

Lðy;DÞ ¼
X
i2I1

1ðj eY i � yjpMÞ þ
X
i2I2

1ðj eY i þ D� yjpMÞ þ 1;

SLðyÞðx;DÞ ¼
X
i2I1

1ðj eY i � yjpMÞ1ð eZiðy; 0ÞXxÞ

þ
X
i2I2

1ðj eY i þ D� yjpMÞ1ð eZiðy;DÞXxÞ þ 1ðyXx=kð0ÞÞ;

where

eZiðy; dÞ ¼ 1ðkð½ eY i þ d� y	=MÞð eY i þ dÞ;

i ¼ 1; . . . ; n: Now SLðyÞðx;DÞ � Lðy;DÞ=2p0 is equivalent to

Cðx; y;DÞp21ðyXkð0Þ=MÞ; (15)

where

Cðx; y;DÞ ¼ S1ðx; yÞ þ S2ðx; y;DÞ

with

S1ðx; yÞ ¼
X
i2I1

Ziðx; y; 0Þ; S2ðx; y;DÞ ¼
X
i2I2

Ziðx; y;DÞ

and

Ziðx; y; dÞ ¼ 21ðj eY i þ d� yjpMÞf1ð eZiðy; dÞXxÞ � 1=2g;
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i ¼ 1; . . . ; n � 1: Clearly,

S1ðx; yÞ � P1ðx; y; �Þ and S2ðx; y;DÞ � P2Dðx; y; �Þ;

where the probability functions P1ðx; y; �Þ and P2Dðx; y; �Þ are defined in (11) and (12). By
independence of S1ðx; yÞ and S2ðx; y;DÞ; we have

PðS1ðx; yÞ þ S2ðx; yÞp21ðy4kð0Þ=MÞjY n ¼ yÞ ¼
X

ðk;iÞ2Jðx;yÞ

P1;jI1jðx; y; kÞP2D;jI2jðx; y; iÞ:

Therefore, we obtain

GðI1;I2Þ
n ðx;DÞ ¼

Z X
ðk;iÞ2Jðx;yÞ

P1;jI1jðx; y; kÞP2D;jI2jðx; y; iÞdFðy � D0Þ: &

The definition of appropriate estimators strongly depends on the application. For instance, for
certain applications in image processing one would prefer to estimate background and/or
foreground using external data. If no external data is available or a local estimation procedure
seems to be more appropriate one can proceed as follows. Calculate residuals

b�i ¼ Y i; i 2 I1;b�i ¼ Y i � bD; i 2 I2;

where, e.g. bD ¼ jI2j
�1
P

i2I2
Y i: Let bFnðxÞ ¼ ðn � 1Þ�1Pn�1

i¼1 1ðb�ipxÞ: The d.f. of the clipping
median under the mixture model can now be estimated by

bGðI1;I2Þ

L1;L2;n
ðx;DÞ ¼

Z X
ðk;iÞ2J�ðx;yÞ

bP1;L1
ðx; y; kÞbP2D;L2

ðx; y; iÞdbFnðy � D0Þ;

where J�ðx; yÞ ¼ fðk; iÞ 2 N2 : jk � ðn � 1Þpþðx; yÞjpL1; ji � ðn � 1Þp�ðx; yÞjpL2; k þ ip21ðy4
kð0Þ=MÞg for truncation constants L1 and L2: Further,

bP1;L1
ðx; y; rÞ ¼

XL1�r

i¼�r

qðjI1j; i; r þ i; bpþnðx; y; 0Þ; bp�nðx; y; 0ÞÞ; jrjpjI1j;

bP2D;L2
ðx; y; rÞ ¼

XL2�r

i¼�r

qðjI2j; i; r þ i; bpþnðx; y;DÞ; bp�nðx; y;DÞÞ; jrjpjI2j

with

bpþnðx; y; dÞ ¼ ðn � 1Þ�1
Xn�1

i¼1

1ðjb�i þ d� yjpM; kð½b�i þ d� y	=MÞb�iXxÞ;

bp�nðx; y; dÞ ¼ ðn � 1Þ�1
Xn�1

i¼1

1ðjb�i þ d� yjpM; kð½b�i þ d� y	=MÞb�ioxÞ

for d 2 R:
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Now we may test H0 : D0 ¼ D versus H1 : D0aD using the test

fn ¼ 1ðbpL1;L2;ne½a=2; 1� a=2	Þ: (16)

where

bpL1;L2;n ¼ bGðI1;I2Þ

L1;L2;n
ðbmn; bDÞ

is the estimated p-value.
4. Convergence of p-values

It remains to discuss the convergence of the proposed estimators for the p-values associated to
the testing problem. We consider the general mixture model case studied in the previous section.
The following theorem provides sufficient conditions for a.s. convergence of the distance betweenbpL1;L2;n and the truncated p-value

G
ðI1;I2Þ

L1;L2;n
ðbmn;D;DÞ ¼

Z X
ðk;iÞ2J�ðbmn;yÞ

P1;L1
ðbmn; y; kÞP2D;L2

ðbmn; y; iÞdF ðy � DÞ:

For sufficiently large L1 and L2 the distance to the true p-value GðI1;I2Þ
n ðbmn;D;DÞ is small.

Theorem 3. Let F be a Lipschitz continuous d.f. Assume (8)–(10), and

0oc1p
jI1j

n
;

jI2j

n
pc2o1

for constants c1; c2: SupposebDn !
a:s:

D; n ! 1; (17)

and

(KC) The kernel k is continuous and the sets fey : kð½ey � ðy � dÞ	=MÞeyXxg are intervals
½Aðx; y; dÞ;Bðx; y; dÞ	 with continuous functions A and B.

Then

sup
x

j bGðI1;I2Þ

L1;L2;n
ðx; ðbDn; bDnÞÞ � G

ðI1;I2Þ

L1;L2;n
ðx; ðbDn; bDnÞÞj!

P
0

as n ! 1:

Remark 4.1. Condition (KC) is satisfied by many kernels, e.g., the Gaussian kernel for which
jðzÞ ¼ zKð½z � a	=MÞ; a 2 R; is unimodal and concave. The implicit function theorem ensures that
the solutions z ¼ zðc; a;MÞ of jðzÞ ¼ x; x40; depend continuously on c; a; and M. Thus A and B

are continuous.

Proof. Clearly, bDn !
a:s:

D; n ! 1; implies that

max
i¼1;...;n

jb�i � �ij!
a:s:

0
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as n ! 1; where �i ¼ Y i if i 2 I1; �i ¼ Y i � D; if i 2 I2; b�i ¼ Y i; i 2 I1; and b�i ¼ Y i � bDn;
i 2 I2: Therefore the e.d.f. of b�1; . . . ;b�n converges to FðxÞ; uniformly in x 2 R: This implies weak
convergence, i.e.,Z

gðyÞdbFnðy � D0Þ !

Z
gðyÞdF ðy � D0Þ (18)

a.s., as n ! 1; for all bounded and continuous functions g. Note that for R-valued functions gn; g
defined on R3 the estimateZ bgnðx; y; dÞdbFnðyÞ �

Z
gðx; y; dÞdFðyÞ

���� ����
p sup

x;y;d
jbgnðx; y; dÞ � gðx; y; dÞj þ

Z
gðx; y; dÞdðbFn � F ÞðyÞ

also implies

sup
x;d

Z bgnðx; y; dÞdbFnðyÞ �

Z
gðx; y; dÞdF ðyÞ

���� ����!a:s: 0
as n ! 1; if

kbgn � gk1!
a:s:

0 (19)

as n ! 1; and kgk1o1:
Note that

bGðI1;I2Þ

L1;L2;n
ðx; bDÞ ¼ Z X

ðk;iÞ2J�ðx;yþbDnÞ

bP1;L1
ðx; y þ bDnÞbP

2bDn;L2

ðx; y þ bDnÞdF ðyÞ:

Thus, the assertion follows if we verify (19) for the functionsbgnðx; y; dÞ ¼
X

ðk;iÞ2J�ðx;yþdÞ

bP1;L1
ðx; y þ dÞbP2d;L2

ðx; y þ dÞ;

gðx; y; dÞ ¼
X

ðk;iÞ2J�ðx;yþdÞ

P1;L1
ðx; y þ d; kÞP2d;L2

ðx; y þ d; iÞ

since kgk1p1: We start by showing that bpþnðx; y; dÞ ! pþðx; y; dÞ; as n ! 1; a.s. Define

epþnðx; y; dÞ ¼
1

n � 1

Xn�1

i¼1

1ð�i 2 ½ðy � dÞ � M; ðy � dÞ þ M	; kð½�i � dÞ=M	�iXxÞ:

Note that by (KC) there exist functions I1ðx; y; dÞ and I2ðx; y; dÞ such that

epþnðx; y; dÞ ¼
1

n � 1

Xn�1

i¼1

1ð�i 2 ½I1ðx; y; dÞ; I2ðx; y; dÞ	Þ:
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Thus, by uniformity of the Glivenko–Cantelli Theorem over VC classes (see Blum, 1955;
DeHardt, 1971; Shorack and Wellner, 1986, Chapter 26, Section 1, Theorem 1) we obtain

sup
x;y;d

jepþnðx; y; dÞ � pþðx; y; dÞj!
a:s:

0

as n ! 1: Note that

jbpþnðx; y; dÞ � epþnðx; y; dÞj ¼ ðn � 1Þ�1
Xn�1

i¼1

½x0iðx; y; dÞ þ Z0iðx; y; dÞ	;

where

x0iðx; y; dÞ ¼ 1ð�ie½I1ðx; y; dÞ; I2ðx; y; dÞ	;b�i 2 ½I1ðx; y; dÞ; I2ðx; y; dÞ	Þ;

z0iðx; y; dÞ ¼ 1ð�i 2 ½I1ðx; y; dÞ; I2ðx; y; dÞ	;b�ie½I1ðx; y; dÞ; I2ðx; y; dÞ	Þ;

i ¼ 1; . . . ; n: Let Z40: On a set Z with PðZÞ ¼ 1 there exists a n0 2 N with En ¼ max1pipnjb�i �

�ijoZ for all nXn0: Writing b�i ¼ �i þ ðb�i � �iÞ we may estimate

x0iðx; y; dÞp1ð�ie½I1ðx; y; dÞ; I2ðx; y; dÞ	; �i 2 ½I1ðx; y; dÞ � Z; I2ðx; y; dÞ þ Z	Þ

pxiðx; y; dÞ ¼ 1ð�i 2 ½I1ðx; y; dÞ � Z; I1ðx; y; dÞ	 [ ½I2ðx; y; dÞ; I2ðx; y; dÞ þ Z	Þ

and, similarly,

z0iðx; y; dÞpziðx; y; dÞ ¼ 1ð�i 2 ½I1ðx; y; dÞ; I1ðx; y; dÞ þ Z	 [ ½I2ðx; y; dÞ � Z; I2ðx; y; dÞ	:

Again, since the Glivenko–Cantelli Theorem holds uniformly over VC classes,

sup
x;y;d

ðn � 1Þ�1
Xn�1

i¼1

xiðx; y; dÞ � Pðx1ðx; y; dÞ ¼ 1Þ

�����
�����!a:s: 0

as n ! 1: By Lipschitz continuity of F we have Pðxiðx; y; dÞ ¼ 1Þ ¼ OðZÞ where the O does not
depend on x; y; d: Similarly, supx;y;d jðn � 1Þ�1Pn�1

i¼1 ziðx; y; dÞj!
a:s:

OðZÞ; as n ! 1: Hence, we
obtain

sup
x;y;d

jbpþnðx; y; dÞ � pþðx; y; dÞj!
a:s:

0; sup
x;y;d

jbp�nðx; y; dÞ � p�ðx; y; dÞj!
a:s:

0 (20)

as n ! 1: Note that this implies

qði; j; bpþnðx; y; dÞ; bp�nðx; y; dÞÞ!
a:s:

qði; j; pþðx; y; dÞ; p�ðx; y; dÞÞ

uniformly in ðx; y; dÞ and jijoI and jjjoK ; as n ! 1: Consequently, the difference of the
corresponding d.f.s converges uniformly in ðx; y; dÞ to 0, i.e., for all x0; y0 2 R;X

kpx0

X
lpy0

qðk; l; bpþnðx; y; dÞ; bp�nðx; y; dÞÞ �
X
kpx0

X
lpy0

qðk; l; pþðx; y; dÞ; p�ðx; y; dÞÞ

�����
����� ! 0

as n ! 1; w.p. 1, since there are only a finite number of summands. Noting that by definitionbP1;L1
; P1;L1

; bP2;d;L2
; and P2d;L2

are finite sums, (19) follows. &



ARTICLE IN PRESS

Table 1

Accuracy of the estimated null distribution for a two-sided significance test with nominal level a ¼ 0:05

M h

25 50 100

0.5 0.0360 0.0360 0.0466

0.75 0.0372 0.0522 0.0554

1 0.0488 0.0512 0.0494

1.25 0.0418 0.0490 0.0526

1.5 0.0428 0.0478 0.0446

1.75 0.0352 0.0450 0.0448

2 0.0244 0.0360 0.0468

Table 2

Level and power of the test (16) to test the null hypothesis that the current pixel belongs to the object against the

alternative that it belongs to the background for different sample sizes and parameter settings

Sample size h background k M

0:5 1 1:5 2

Size (D0 ¼ D ¼ 1)

24 6 0:041 0:021 0:021 0:025
12 0:036 0:024 0:019 0:015

48 12 0:026 0:034 0:033 0:021
24 0:024 0:017 0:028 0:018

63 24 0:027 0:023 0:041 0:040
48 0:024 0:028 0:032 0:023

Power for D0 ¼ 0;D ¼ 1

24 6 0:097 0:118 0:121 0:079
12 0:090 0:115 0:109 0:071

48 12 0:120 0:161 0:151 0:101
24 0:126 0:161 0:144 0:106

63 24 0:144 0:149 0:167 0:116
48 0:129 0:157 0:165 0:116

A. Steland / Statistics & Probability Letters 71 (2005) 1–1312
5. Simulations

We conducted a simulation study to assess the accuracy of the proposed methods. In our first
experiment i.i.d. Nð0; 1Þ samples were generated, and the clipping median bmn using the Gaussian
kernel was calculated. For the simulation we used estimators without truncation, but the resulting
procedure is very time consuming. Therefore, for time critical applications we recommend to use
the proposed truncated estimators. Table 1 reports the simulated level of the test which rejects the
null hypothesis that D0 ¼ 0 if the estimated p-value is less than 0:025 or greater 0:975: Each entry
was obtained by 5000 repetitions. It can be seen that the estimated p-values provide reliable
statistical tests.
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The second experiment deals with the more interesting mixture model. Test samples were
simulated according to the model

Y i � Nð0; 1Þ; i 2 I1; Y i � NðD; 1Þ; i 2 I2

and Y n � NðD0; 1Þ: We used a Gaussian kernel (standard normal density) for k.
To mimick an object detection problem, we used h ¼ 24; 48; and 63, and M ¼ 0:5; 1; 1:5; and 2 .

The level shifts were chosen as D ¼ 1 and D0 ¼ 0; 1: The number of background pixels k was
chosen to ensure k=h ¼ 0:25 and 0:5: Since the computations are more time consuming in the
mixture model case, each table entry was calculated based on 1000 replications.
Table 2 provides estimates for the true level of the proposed procedure for a nominal level

a ¼ 0:05 using D0 ¼ D ¼ 1; and power estimates for D0 ¼ 0 and D ¼ 1: It can be seen that the test
procedure is conservative and also has power to detect small to moderate shifts. The results also
indicate that there is an optimal value of M which maximizes the power.
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